Normalized null hypersurfaces in the Lorentz-Minkowski space satisfying $L_r x =U x +b$
نویسندگان
چکیده
In the present paper, we classify all normalized null hypersurfaces $x: (M,g,N)\to\R^{n+2}_1$ endowed with UCC-normalization vanishing $1-$form $\tau$, satisfying $L_r x =U +b$ for some (field of) screen constant matrix $U\in \R^{(n+2)\times(n+2)}$ and vector$b\in\R^{n+2}_{1}$, where $L_r$ is linearized operator of the$(r+1)th-$mean curvature hypersurface for$r=0,...,n$. For $r=0$, $L_0=\Delta^\eta$ nothing but (pseudo-)Laplacian on $(M, g, N)$. We prove that lightcone $\Lambda_0^{n+1}$, cylinders $\Lambda_0^{m+1}\times\R^{n-m}$, $1\leq m\leq n-1$ $(r+1)-$maximal Monge are only UCC-normalized normalization $\tau$ above equation. case $U$ scalar $ \lambda I$, $\lambda\in\R$ hence whole $M$, show $\Delta^\eta =\lambda +b$, open pieces hyperplanes.
منابع مشابه
Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying L_k(x)=Ax+b
We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k
متن کاملspacelike hypersurfaces in riemannian or lorentzian space forms satisfying l_k(x)=ax+b
we study connected orientable spacelike hypersurfaces $x:m^{n}rightarrowm_q^{n+1}(c)$, isometrically immersed into the riemannian or lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~l_kx=ax+b$,~ where $l_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $h_{k+1}$ of the hypersurface for a fixed integer $0leq k
متن کاملTranslation Surfaces of the Third Fundamental Form in Lorentz-Minkowski Space
In this paper we study translation surfaces with the non-degenerate third fundamental form in Lorentz- Minkowski space $mathbb{L}^{3}$. As a result, we classify translation surfaces satisfying an equation in terms of the position vector field and the Laplace operator with respect to the third fundamental form $III$ on the surface.
متن کاملThe Special Hypersurfaces of Minkowski Space
Let x : (M, F ) →֒ (V n+1, F ) be a simply connected hypersurface in a Minkowski space (V n+1, F ). In this paper, using the Gauss formula of Chern connection on Finsler submanifolds, we shall prove that if x(p) is normal to Tp(M)(∀p ∈ M), then M with the induced metric is isometric to the standard Euclidean sphere.
متن کاملLorentz Hypersurfaces Satisfying △h⃗ = Αh⃗ with Complex Eigen Values
The study of submanifolds with harmonic mean curvature vector field was initiated by B. Y. Chen in 1985 and arose in the context of his theory of submanifolds of finite type. For a survey on submanifolds of finite type and various related topics was presented in [8, 9]. Let M r be an n-dimensional, connected submanifold of the pseudo-Euclidean space E s . Denote by x⃗, H⃗, and △ respectively the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tamkang Journal of Mathematics
سال: 2022
ISSN: ['0049-2930', '2073-9826']
DOI: https://doi.org/10.5556/j.tkjm.54.2023.4851